
For those of us who have
previously used C and C++ to

write our Windows programs,
Delphi’s use of resource files
seems a little strange. The only real
problem is that when a project is
created in Delphi, a resource file is
also created with the same name as
the project. Delphi controls this
file. Using the Image Editor to add
bitmaps, cursors or icons to the
Delphi-controlled resource file is
doomed to failure under normal
circumstances.

However, all is not lost. In this
article I’ll work through some ex-
amples of the use of bitmaps, icons
and cursors from resources, then
finish off by outlining a method by
which the Delphi-controlled re-
source file can be manipulated
without raising any objections
from Delphi.

The Image Editor
A word of caution should be given
about the Image Editor. Apart from
my own programming errors, this
is the only part of Delphi that has
caused problems to date.

I would advise anyone using this
tool to make sure that everything
else which is open has been saved
first. I would also advise that any
work done in the Image Editor be
saved regularly and that each open
image and file be closed before
closing the editor. This will not
prevent problems totally, but will
reduce the likelihood of work being
lost.

Loading From .BMP Files
This first project loads a bitmap
from a file which is not part of a
resource file. In the project itself,
the name of the bitmap is given
explicitly. Unless a path is defined,
Delphi assumes that the bitmap is
in the same directory as the
executable file. You can of course
include the full path and file name
for the bitmap in the code, but this
would tie your application to a
specific directory structure.

Using Resource Files In Delphi
by Dave Bolt

If we create a new project, rename
UNIT1.PAS to BIT1.PAS and
PROJECT1.DPR to BITPRJ1.DPR,
then add a TImage component to
the form, we have the basic frame-
work to display an image. We can
initialise the image component by
adding code to the FormCreate
handler as in Listing 1.

Compiling and running this
project results in the bitmap being
displayed. If the bitmap is not
found when the program runs, an
EFOpenError exception is gener-
ated. This can easily be detected
and handled if required.

The object MyBitmap is our
responsibility, and must be cre-
ated before use then destroyed
afterwards by our code. A separate
copy of the bitmap is stored in the
TImage component and is automat-
ically allocated and de-allocated by
the program.

Loading From Resource Files
To load a resource from a resource
file, the file must have a different
name to the project in which it is
used. If we create a new project
exactly as above, but call the files
BIT2.PAS and BITPRJ2.DPR, we find
that after saving the project there
is a resource file called
BITPRJ2.RES in the directory
where the project was saved. In
order to access our own resource
file, it must be referenced explicitly
in the project file (.DPR) using, eg:

{$R BITS.RES}

for a file called BITS.RES (which is
on this issue’s disk along with the

other files from this article, and
contains a bitmap resource called
FIRST). You might think that the
{$R *.RES} statement included by
default in the .DPR file will pull in
your own .RES files, but this is
strangely not the case! The best
place to insert your {$R ...} state-
ment is after the existing one, after
the uses statement.

If we add the same code to the
FormCreate method as in Listing 1,
but change the LoadFromFile
command to:

MyBitmap.Handle :=
 LoadBitmap(hInstance,
 ’FIRST’);

then tidy up the display by adding
the following two lines:

Image1.Width :=
 MyBitmap.Width;
Image1.Height :=
 MyBitmap.Height;

then run the program, we should
get the same image displayed as
before. The extra lines of code
adjust the size of the TImage compo-
nent to fit the bitmap at run time.

Caution
If the bitmap which is to be loaded
is not in the resource file, the
program will still run, it just won’t
display the bitmap. This situation
can be avoided by testing to see if
the handle is zero after a call to
LoadBitmap and taking the appropri-
ate action. Failure can also occur if
there is insufficient memory to
load the bitmap.

procedure TForm1.FormCreate(Sender : TObject);
var
 MyBitmap : TBitmap;
begin
 MyBitmap := TBitmap.Create;
 MyBitmap.LoadFromFile(’FIRST.BMP’);
 Image1.Canvas.Draw(0, 0, MyBitmap);
 MyBitmap.Destroy;
end;

➤ Listing 1

January 1996 The Delphi Magazine 13

Custom Cursors
by Ken Otto

Creating custom cursors in Delphi can be a
confusing venture. Not because it is hard, but

because it is so poorly illustrated (and even wrong)
in the Delphi documentation and help files.

A cursor actually contains two 32 x 32 mono-
chrome bitmaps. One of these bitmaps is referred to
as the ‘XOR’ bitmap, and the other is known as the
‘AND’ bitmap. When you create a cursor with Delphi’s
Image Editor, you won’t need to worry about this. The
cursor also has two fields defining the ‘hot-spot’: the
point on the cursor representing its exact location.

There are 17 pre-defined cursor constants for your
Delphi application. Some of the constant values in the
Delphi Help file are incorrect. A corrected listing of
cursors and their constants is shown opposite.

To create your own cursor, first create a resource
(.RES) file. From the Delphi IDE select Tools|Image
Editor then select File|New. By default, the ‘Resource
File (RES)’ radio button will be selected. Choose OK.
A window appears, captioned ‘Untitled1.RES’. Click
New, and a window will pop up asking for the type of
resource you want to create. Choose Cursor and click
OK. You may need to maximize the window at this
point. Select a tool and begin drawing your cursor. If
you make a mistake, select Edit|Undo to erase the last
image written (this will continue to remove several
layers each time it is selected). You can enlarge the
drawing area by clicking the Zoom button. If you prefer
a grid on the drawing area, select Options|Show Grid
On Zoom. If you want the hot-spot to be the center of

the cursor, select Image|Hotspot... and place 16 in
the X and Y fields.

When you have finished drawing your cursor, you
will probably want to rename it from the default name
CURSOR_1: close the cursor editor window, ensure the
Cursors tab on the untitled project window is
selected, select CURSOR_1 and click the Rename button.
Make sure the new name is all capital letters. Now
save the .RES file by selecting File|Save As, taking
care not to give the file the same name as your
project. A sample is included in the CHOPDEMO.LZH
archive on the disk.

Ken Otto writes Pascal applications on the HP3000
in Sacramento, CA, USA; programming in Delphi is a
hobby he enjoys. He can be reached on CompuServe
at 73041,1336

Resources By Number
by Brian Long

When you name a resource in a resource file,
Windows lets you choose numbers instead of

names. In fact Microsoft recommends you use
numbers instead of names for efficiency. However,
the Image Editor will only store character strings as
resource identifiers.

To generate a resource file for a cursor that marks
resources by number, make a cursor resource file
(.CUR file) with the Image Editor. One is supplied on
the disk in the NUMCURS.LZH archive as file
TARGET.CUR. A text file then acts as a resource script
(a file with a .RC extension), and can look like this file,
CURSOR2.RC (see my Typecasting Part 3 article in
this issue for details of how to share constants
between the resource script and the Delphi project):
2 CURSOR TARGET.CUR

This can be compiled with the command-line
resource compiler BRCC.EXE (found in the directory
DELPHI\BIN) with the command: BRCC CURSOR2.RC

The {$R CURSOR2.RES} compiler directive will bind
in the resulting CURSOR2.RES and LoadCursor can
also be used to load up a numbered, as opposed to
named, resource. The last parameter to LoadCursor
needs to be a PChar type, but we wish to specify a
number. The parameter can be either PChar(2), ’#2’
or MakeIntResource(2). So, the OnCreate handler will
look like:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Screen.Cursors[crTarget] :=
 LoadCursor(HInstance, PChar(2)
 Form1.Cursor := crTarget;
end;

The complete example project in NUMCURS.LZH on
the disk uses a ‘named’ cursor for the form and a
different ‘numbered’ cursor for a button on the form.

Brian Long... well, by now surely he needs no
introduction!

14 The Delphi Magazine Issue 5

A Simple Animation
This animation is so simple that it
only has two frames. The program
cycles through the images to
hopefully give the impression of
movement. This is the kind of thing
which makes buttons appear to be
pressed in or out in Windows
programs and to animate logos.

If we take the project in the
previous example and save it using
the names BIT3.PAS and
BITPRJ3.DPR, we have the basis for
the next step. We need to add a
timer to the form and the following
variable declarations in the public
part of the BIT3.PAS unit:

MyBitmap :
 array [0..1] of TBitmap;
BitMapNum : integer;

We also need FormCreate, Timer1
and FormDestroy handlers as in
Listing 2.

This project will now load two
images from a resource file into an
array of TBitmap objects and alter-
nately display them in the image
component. The image displayed
is updated every fifth of a second
in response to the timer. Note that
the TBitmap array is declared as
part of the TForm1 object, instead of
being local to the FormCreate
handler, and must be initialised in
FormCreate and destroyed in
FormDestroy.

procedure TForm1.FormCreate(Sender : TObject);
begin
 MyBitmap[0] := TBitmap.Create;
 MyBitmap[1] := TBitmap.Create;
 MyBitmap[0].Handle := LoadBitmap(hInstance, ’FIRST’);
 MyBitmap[1].Handle := LoadBitmap(hInstance, ’SECOND’);
 Image1.Width := MyBitmap[0].Width;
 Image1.Height := MyBitmap[0].Height;
 { Show the image component copy of the bitmap }
 Image1.Canvas.Draw(0, 0, MyBitmap[0]);
 BitMapNum := 0;
 Timer1.Interval := 200;
end;

procedure TForm1.Timer1Timer(Sender : TObject);
begin
 BitMapNum := (BitMapNum+1) MOD 2;
 Image1.Canvas.Draw(0, 0, MyBitmap[BitMapNum]);
end;

procedure TForm1.FormDestroy(Sender : TObject);
begin
 MyBitmap[0].Destroy;
 MyBitmap[1].Destroy;
end;

➤ Listing 2

We have now loaded bitmaps
from a bitmap file and from
resource files. The loaded data has
been copied to a TImage component
either once only (at form creation),
or repeatedly in response to an
event. Similar things can be done
with cursors.

Loading A Cursor
As they say in all the best recipes,
first create your cursor (see oppo-
site). Then, as for the bitmaps,
create a new project, name the files
CUR1.PAS and CURPRJ1.DPR, and
add the FormCreate handler which
is shown in Listing 3. Also, in the
CUR1.PAS unit file, add a {$R}
statement after the interface
keyword: {$R CURSORS.RES}.

Although Delphi will permit you
to insert this statement in a num-
ber of places in the unit, this seems
to be the place to put it to get it to
work. The {$R} statement can also
go after the default {$R} statement
in the .DPR file, as for the bitmap
projects. If the unit is to be used in
another project, this could lead to
problems remembering to include
the correct file so I prefer to add it
to the relevant unit.

procedure TForm1.FormCreate(Sender : TObject);
begin
 Screen.Cursors[1]:=LoadCursor(HInstance,’ONE’);
 Cursor:=1; { You could also reference your cursor as a constant: }
end; { “Cursor := crMyCursor;” just by including the statement }
 { “const crMyCursor = 1;” before “implementation” in the unit }

➤ Listing 3

➤ Standard Cursors in Delphi

Screen.Cursors[] is an array of
cursors supplied by Delphi. The
default cursors use index numbers
from 0 for the default cursor to -17
for crSQLWait. Unless we wish to
replace any of the defaults, the best
strategy is to use cursor numbers
starting from 1 and working up.

Running the program should
give a strange cursor consisting of
an angle and a ring containing a
black quadrant. If an attempt is
made to load a cursor resource,
but there is nothing matching that
name in the resource files, the han-
dle will be zero. If a resource other
than a cursor is found, the handle
will not be zero, so take care to only
reference cursors in LoadCursor.

An Animated Cursor
We can create a new project by
saving the previous one as
CUR2.PAS and CURPRJ2.DPR. For
the animation we need a TTimer
component on the form and this
time also a TButton. Caption the
button ‘Finish’ so that there is
some point to including it, and it
helps if the size is a little larger than
normal. Also set the Cursor
property of the button to crCross.

January 1996 The Delphi Magazine 15

In the Public part of the type TForm1
declaration include:

CursorCount : Integer;

The handlers in Listing 4 are also
required.

CursorCount is used to keep track
of the next cursor to load. Having it
zero-based simplifies the arithme-
tic. The first user-defined cursor is
1 and the last is 4, so we add 1 to
CursorCount to give the cursor num-
ber to use. When this program is
run the cursor will have a rotating
quadrant as part of it. The effect
can be improved considerably by
drawing eight versions with the
quadrant moved 45 degrees from
the last position.

Compare the behaviour of the
cursor with the previous version.
As the cursor moves across the
non-client area of the form, it starts
flashing between the custom
cursor and the relevant default
cursor. This undesirable behav-
iour is brought on by the slightly
simplistic method of changing the
cursor in the timer handler. Note
also that when the cursor is over
the ‘Finish’ button it changes to the
shape set at design time. Try this
with the Button1.Enabled property
set to False.

One method of modifying the
cursor behaviour further would be
to use GetCursorPos to find the
position in terms of global co-
ordinates, then convert to client
area co-ordinates and check if the
cursor is actually in a valid region
or not.

Another method, which is dem-
onstrated in CURPRJ2A.PRJ, uses
one of the less known windows
messages WM_NCMOUSEMOVE, which is
generated in response to mouse
movement in the non-client area of
a window. This just happens to be
perfect for controlling the flashing
effect in CURPRJ2.PRJ.

We need to amend the private
and public declarations of the type
section in the unit file (now
CUR2A.PAS) as in Listing 5.

The WMNCMouseMove procedure is a
message handler for the required
message. It overrides the default
message handler, but instead of
the override keyword it uses the

private
 procedure WMNCMouseMove(var AMessage : TMessage); message WM_NCMouseMove;
public
 CursorCount : integer;
 DeadArea : BOOL; { True if NonClient Area }
end;

➤ Listing 5

procedure TForm1.FormCreate(Sender : TObject);
begin
 Screen.Cursors[1] := LoadCursor(HInstance,’ONE’);
 Screen.Cursors[2] := LoadCursor(HInstance,’TWO’);
 Screen.Cursors[3] := LoadCursor(HInstance,’THREE’);
 Screen.Cursors[4] := LoadCursor(HInstance,’FOUR’);
 Cursor := 1;
 CursorCount := 0;
 Timer1.Interval := 100;
end;

procedure TForm1.Timer1Timer(Sender : TObject);
begin
 CursorCount := (CursorCount+1) MOD 4;
 Cursor := CursorCount+1;
end;

procedure TForm1.Button1Click(Sender : TObject);
begin
 Close;
end;

➤ Listing 4

procedure TForm1.WMNCMouseMove(var AMessage : TMessage);
begin
 DeadArea := TRUE; {Cursor is on the form but in an invalid area}
 AMessage.Result := 0; { Win API Help says return 0 if message was handled}
 inherited;
end;

procedure TForm1.Timer1Timer(Sender : TObject);
begin
 { Calculate the next cursor }
 CursorCount:= (CursorCount+1) MOD 4;
 { If in a valid region, Update cursor }
 if not DeadArea then Cursor := CursorCount+1;
end;

procedure TForm1.FormMouseMove(Sender : TObject; Shift : TShiftState;
 X,Y : Integer);
begin
 DeadArea := FALSE; { If this handler is called, DeadArea must be false }
 Cursor := CursorCount+1; { Update Cursor }
end;

➤ Listing 6

message keyword. (For more
information use Search All in the
Help system, and look up
‘message’). This method of over-
riding windows message handlers
can be used for any message and
also to handle additional messages
generated by our own programs.

The message handling function
is given in Listing 6, and goes in the
implementation section of the
CUR2A.PAS unit. The timer and
mouse movement handlers also
need to be amended.

Note that the WMNCMouseMove
handler will only be called if Win-
dows updates the mouse position

while the mouse cursor happens to
be on a non-client area of the form.

Icons
Looking at Delphi’s Options|
Project|Application settings we
find that Delphi supplies a default
icon. This can be replaced quite
simply by clicking the ‘Load Icon’
button and browsing around until
we find a suitable icon. After com-
piling the project and running it, it
will quite nicely change itself into
the new icon as requested. Further,
if we use Image Editor to open the
resource file that Delphi maintains
for the project and edit MAINICON,

16 The Delphi Magazine Issue 5

we find that the resource file
actually contains the requested
icon. This is the only situation
where I have found Delphi giving
the user any control over the
default resource file for a project.

If we create a new project, we can
note that the form properties in the
Object Inspector list an Icon
property, which is blank by default.
Double-clicking on the ‘...’ for that
field brings up Picture Editor,
which can be used to load another
icon, in addition to the default one
already discussed. This means that
in a multi-form project we can have
a different icon for each form.

As with the bitmaps, we can load
icons from files using the method
LoadFromFile and from resource
files using the LoadIcon function
from the Windows API. Listing 7
shows a simple example of loading
from a resource file, the project is
ICOPRJ1.DPR. Once again, I have
included an animation. After the
previous examples, this project
should be clear enough. The
animation is of course only visible
when the project is minimised. The
‘Shrink Me’ button in the middle of
the form minimizes the program.

If an icon name is supplied in
LoadIcon but the icon is not found,
the handle returned will be NUL.

Side-Stepping Delphi
At the start of this article I
mentioned that Delphi maintains a
resource file with the same name
as each project and that attempt-
ing to manipulate the contents is
generally a waste of time.

However, if you wish to alter the
resources available in the default
file, this can be done as long as the
associated project is not active
within Delphi, ie if you want to alter
CURPRJ1.RES, either close the
CURPRJ1 project, or open another
project. Delphi will then be quite
happy for you to alter the contents
of the default .RES file.

A direct result of this behaviour
is that it is possible to alter a
project resource file without
intending to, simply by forgetting
that a particular resource file is the
default for a project that has not
been worked on for some time and
adding or removing resources. If a

project suddenly starts failing to
compile because of duplicate
resource identifiers, check all the
resources included in case this has
happened. The project must be
re-compiled in order to make use of
revised resources.

Personally, I feel that there is
very little advantage in altering the
default resource file. Firstly, there
is too much to do, compared with
just adding another file reference
into either the project (.DPR) or a
unit (.PAS) file. Secondly, it makes
life difficult if you wish to copy a
unit into another project, since you
then have to manipulate the
default resource file for that pro-
ject as well. Thirdly, the work-
around is not something that
Borland have recommended. If you
contact them, they specifically tell

you not to try to modify the default
resource file.

My real reason for including the
technique here is that if like me you
have accidentally replaced a
default resource file in a project,
you are now in a position to sort it
out without deleting the whole
project and starting again.

One final comment. The names
of resources in the .RES file can in
theory be in either upper or lower
case. The feedback I have had from
various people is that upper case
throughout is needed to ensure
that everything works correctly.

Dave Bolt hails from Barnsley in
Yorkshire and can be contacted on
CompuServe as 100112,522
©Copyright 1995 D M Bolt

unit Ico1;
interface
{$R ICONS.RES}
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, ExtCtrls, StdCtrls;
type
 TForm1 = class(TForm)
 Timer1 : TTimer;
 Button1 : TButton;
 procedure FormCreate(Sender : TObject);
 procedure Timer1Timer(Sender : TObject);
 procedure FormDestroy(Sender : TObject);
 procedure Button1Click(Sender : TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 IconNumber:integer;
 Ico : array [0..1] of TIcon;
 end;
var Form1 : TForm1;
implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender : TObject);
begin
 Ico[0] := TIcon.Create;
 Ico[1] := TIcon.Create;
 Ico[0].Handle := LoadIcon(HInstance, ’Icon_1’);
 Ico[1].Handle := LoadIcon(HInstance, ’Icon_2’);
 Icon := Ico[0];
 IconNumber := 0;
 Timer1.Interval := 200;
end;

procedure TForm1.FormDestroy(Sender : TObject);
begin
 Ico[0].Destroy;
 Ico[1].Destroy;
end;

procedure TForm1.Timer1Timer(Sender : TObject);
begin
 IconNumber := (IconNumber+1) MOD 2;
 Icon := Ico[IconNumber];
end;

procedure TForm1.Button1Click(Sender : TObject);
begin
 Application.Minimize;
end;
end.

➤ Listing 7

18 The Delphi Magazine Issue 5

	The Image Editor
	Loading From .BMP Files
	Loading From Resource Files
	Caution
	Custom Cursors
	Resources by Number
	A Simple Animation
	Loading A Cursor
	An Animated Cursor
	Icons
	Side-Stepping Delphi

